Главная » Файлы » Для учня/студента » Інформатика | [ Добавить материал ] |
[ · Скачать удаленно (79 kb) ] | 12.11.2010, 19:00 |
Реферат на тему: Рекурсивні означення та підпрограми Був собі білий бичок. І пішов він у ліс… Означення називається рекурсивним, якщо воно задає елементи множини за допомогою інших елементів цієї ж множини. Об'єкти, задані рекурсивним означенням, також називаються рекурсивними. Нарешті, рекурсія – це використання рекурсивних означень. Приклади 1. Значення функції "факторіал" задаються виразом: 0!=1, n!=n (n-1)!. Вони утворюють множину {1,2,6,…}: 0!=1, 1!=1, 2!=2, 3!=6, … . Усі її елементи, крім першого, означаються рекурсивно. Об'єкти, означені в прикладах 9.1–9.2, тобто значення функції "факторіал" та дужкові записи виразів, є рекурсивними. Приклади 3. Змінимо означення функції "факторіал" на таке: n!=n (n-1)! за n>0, 0!=1!. Спочатку значення функції від 1 виражається через її ж значення від 0, яке, у свою чергу, – через значення від 1. За цим "означенням" так і не дізнатися, чому ж дорівнює 1!. У цьому старому анекдоті не називається справжнє джерело грошей. Якщо через A, B, C позначити чоловіка, його дружину та шухлядку, то пересування грошей зображається так: A C B A …, і справжнє джерело грошей залишається невідомим. Щоб подібна "дурна нескінченність" не виникала в рекурсивному означенні, повинні виконуватися умови: 1. множина означуваних об'єктів є частково упорядкованою; Неважко переконатися, що означення з прикладів 9.1–9.2 задовольняють ці умови, а з прикладів 9.3–9.5 – ні. Для тих, кому не знайомі терміни "частково упорядкована множина" та "мінімальний елемент", дамо невелике пояснення. 1. для кожного елемента a множини пара (a, a) є у відношенні; Очевидно, що в прикладі 9.1 кожні два елементи множини {1, 2, 6, …} порівнювані між собою, а мінімальним є 1. У прикладі 9.2 ідентифікатор менше іншого, якщо той утворюється з нього дописуванням символів наприкінці. Так, a менше a1 і aaa, а a1 і aa непорівнюванні. Ідентифікатор a – мінімальний. У прикладі 9.3 один вираз менше іншого, якщо він є його частиною. Так, 1 і 2 менше, ніж (1)+(2), а (1)+(2) менше, ніж ((1)+(2))+(1); мінімальними елементами є всі можливі сталі, і між собою вони непорівнювані. 2. Рекурсивні підпрограми Приклад 6. Напишемо рекурсивну функцію f за таким означенням функції "факторіал": n!=n (n-1)! за n>1, 1!=1 (вважається, що n>0). При імітації виконання викликів рекурсивних підпрограм їх локальні змінні позначають у такий спосіб. Якщо підпрограма F викликана з програми, то її локальна змінна X позначається F.X. За виконання кожного рекурсивного виклику підпрограми F, указаного в її тiлi, з'являється нова змiнна X. Вона позначається дописуванням префікса "F." до позначення змінної X у попередньому виклику: F.F.X, F.F.F.X тощо. Приклад 7. Імітацію виконання виклику f(2) функції з прикладу 9.6 можна податі таблицею: Приклад 8. Найбільший спiльний дільник НСД(a,b) натуральних a і b можна обчислити рекурсивно на основі таких рівностей: З рекурсивними підпрограмами пов'язано два важливих поняття – глибина рекурсії та загальна кількість викликів, породжених викликом рекурсивної підпрограми. Взагалі, за виклику з аргументом n породжується ще n-1 виклик, і загальна кількість незакінчених викликів досягає n. Отже, максимальна кількість незакінчених рекурсивних викликів при виконанні виклику підпрограми називається глибиною рекурсії цього виклику. За виконання виклику з глибиною рекурсії m одночасно "існують" m екземплярів локальної пам'яті. Кожний екземпляр має певний розмір, і якщо глибина буде надто великою, то автоматичної пам'яті, яку надано процесу виконання програми, може не вистачити. Друге поняття можна назвати загальною кількістю вкладених викликів, породжених викликом рекурсивної підпрограми. Ця кількість значною мірою впливає на час виконання виклику. Проілюструємо це наступним прикладом. Згідно цього означення напишемо рекурсивну функцію обчислення за m, n, де 0 n m, біноміального коефіцієнта C(m,n): Як бачимо, кожний виклик, у якому значення аргументів m>1, 0 Отже, вживання рекурсивних підпрограм вимагає обережності та вміння оцінити можливу глибину рекурсії та загальну кількість викликів. Не завжди слід писати рекурсивні підпрограми безпосередньо за рекурсивним означенням. Принаймні, для обчислення біноміальних коефіцієнтів узагалі краще скористатися циклом (розділ 5.2). Справа в тім, що виконання кожного виклику підпрограми потребує У цьому розділі ми розглядаємо лише так звану пряму рекурсію, коли підпрограма містить виклики самої себе. У програмуванні зустрічається також і непряма рекурсія, коли підпрограма містить виклики інших підпрограм, а ті – виклики цієї підпрограми. Приклади непрямої рекурсії та реалізацію її в мові Паскаль ми розглянемо в розділі 21. 3. "Ханойські вежі" На дошці є три голки: 1, 2, 3. На голці 1 розміщена вежа з n дисків; нижній диск має найбільший діаметр, а діаметр кожного наступного менший від попереднього. За один хід із будь-якої голки можна взяти верхній диск і перемістити на іншу, але дозволено класти диск лише на дошку або на диск більшого діаметра. Треба перемістити усю вежу з голки 1 на голку 3. Для перенесення вежі висотою n дисків з голки 1 на голку 3 необхідно перенести вежу висотою n-1 на голку 2, потім перенести нижній диск на голку 3 та перенести вежу з голки 2 на голку 3. При перенесенні вежі з 1 на 2 допоміжною є голка 3, а при перенесенні з 2 на 3 – голка 1. Інша послідовність дій неможлива. Отже, розв'язання задачі для вежі висотою n описується через розв'язання задачі для вежі висотою n-1. Позначимо disk(a,b) перенесення одного диску з голки a на голку b, tow(h, a, b, c) – перенесення вежі висотою h з голки a на b з використанням голки c як допоміжної (tow – це скорочення від tower, або вежа). За h>1 виконання tow(h, a, b, c) зводиться до виконання tow(h-1, a, c, b); disk(a, b); tow(h-1, c, b, a), Очевидно, що глибина рекурсії викликів цієї процедури дорівнює значенню їх першого аргументу h. Визначимо кількість переносів дисків як функцію f(n), де n – висота вежі. Очевидно, що f(1)=1, і що f(n)=2 f(n-1)+1. За принципом індукції неважко довести, що f(n)=2n-1. Значення f(64) дорівнює приблизно 1022. Якщо припустити, що кожної секунди ченці переносять один диск, то для переносу такої вежі потрібно приблизно 1015 років! Навіть якщо припустити, що комп'ютер здатний щосекунди друкувати по сто тисяч позначень переносів, то й тут знадобиться 1010 років. Кінець світу, мабуть, настане раніше… Цей алгоритм обчислення натурального n-го (n>0) степеня цілого числа x виглядає зовсім просто: за n=1 xn = x, Як бачимо, обчислення xn зводиться до обчислення xndiv2, запам'ятання його, піднесення до квадрату, та множення його на x за непарного n. Отже, обчислення xn описується рекурсивною функцією Тепер спробуємо описати залежність глибини рекурсії викликів функції від значення аргументу. У кожному наступному вкладеному виклику значення аргументу n менше від попереднього значення принаймні вдвічі. Оскільки за n=1 відбувається повернення з виклику, то таких зменшень значення аргументу n не може бути більше, ніж log2n. Отже, глибина рекурсії виклику з аргументом n не перевищує log2n. Таку глибину можна вважати доброю властивістю алгоритму. При кожному виконанні виклику відбувається не більше одного ділення, піднесення до квадрату та множення, тому загальна кількість арифметичних операцій не більше 3log2n. За великих значень n це суттєво менше "лобових" n-1 множень. Наприклад, за n=1000 це приблизно 30. Зауважимо, що при деяких значеннях n наведений алгоритм не дає найменшої кількості множень, необхідних для обчислення n-го степеня. Наприклад, при n=15 за цим алгоритмом необхідні 6 множень, хоча можна за допомогою 3-х множень обчислити x5, після чого помножити його на себе двічі (разом 5 множень). Проте написати алгоритм, який задає обчислення довільного степеня з мінімальною кількістю множень, – не зовсім проста задача. Залишимо її для наполегливих читачів. Побудуємо нерекурсивний аналог наведеного алгоритму. Подамо обчислення за рекурсивним алгоритмом у такому вигляді: Коефіцієнти при 20, 21, 22 тощо – це послідовні остачі від ділення на 2 чисел причому остачі 1 відповідає в рекурсивному алгоритмі присвоювання t:=x, а 0 – присвоювання t:=1. Таким чином, двійковий розклад, наприклад, числа 13 по степенях двійки відповідає такому поданню x13: x23 x22 1 x20. x20=x, x21=x2, x22=(x2)2, x23=(x22)2 тощо | |
Просмотров: 690 | Загрузок: 166 | |